Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            In this work, we investigate anharmonic vibrational polaritons formed due to strong light–matter interactions in an optical cavity between radiation modes and anharmonic vibrations beyond the long-wavelength limit. We introduce a conceptually simple description of light–matter interactions, where spatially localized cavity radiation modes couple to localized vibrations. Within this theoretical framework, we employ self-consistent phonon theory and vibrational dynamical mean-field theory to efficiently simulate momentum-resolved vibrational-polariton spectra, including effects of anharmonicity. Numerical simulations in model systems demonstrate the accuracy and applicability of our approach.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Free, publicly-accessible full text available December 18, 2025
- 
            We calculate bandgaps of 12 inorganic semiconductors and insulators composed of atoms from the first three rows of the Periodic Table using periodic equation-of-motion coupled-cluster theory with single and double excitations (EOM-CCSD). Our calculations are performed with atom-centered triple-zeta basis sets and up to 64 k-points in the Brillouin zone. We analyze the convergence behavior with respect to the number of orbitals and number of k-points sampled using composite corrections and extrapolations to produce our final values. When accounting for electron–phonon corrections to experimental bandgaps, we find that EOM-CCSD has a mean signed error of −0.12 eV and a mean absolute error of 0.42 eV; the largest outliers are C (error of −0.93 eV), BP (−1.00 eV), and LiH (+0.78 eV). Surprisingly, we find that the more affordable partitioned EOM-MP2 theory performs as well as EOM-CCSD.more » « less
- 
            The transport of energy and information in semiconductors is limited by scattering between electronic carriers and lattice phonons, resulting in diffusive and lossy transport that curtails all semiconductor technologies. Using Re6Se8Cl2, a van der Waals (vdW) superatomic semiconductor, we demonstrate the formation of acoustic exciton-polarons, an electronic quasiparticle shielded from phonon scattering. We directly imaged polaron transport in Re6Se8Cl2at room temperature, revealing quasi-ballistic, wavelike propagation sustained for a nanosecond and several micrometers. Shielded polaron transport leads to electronic energy propagation lengths orders of magnitude greater than in other vdW semiconductors, exceeding even silicon over a nanosecond. We propose that, counterintuitively, quasi-flat electronic bands and strong exciton–acoustic phonon coupling are together responsible for the transport properties of Re6Se8Cl2, establishing a path to ballistic room-temperature semiconductors.more » « less
- 
            We study the performance of spin-component-scaled second-order Møller–Plesset perturbation theory (SCS-MP2) for the prediction of the lattice constant, bulk modulus, and cohesive energy of 12 simple, three-dimensional covalent and ionic semiconductors and insulators. We find that SCS-MP2 and the simpler scaled opposite-spin MP2 (SOS-MP2) yield predictions that are significantly improved over the already good performance of MP2. Specifically, when compared to experimental values with zero-point vibrational corrections, SCS-MP2 (SOS-MP2) yields mean absolute errors of 0.015 (0.017) Å for the lattice constant, 3.8 (3.7) GPa for the bulk modulus, and 0.06 (0.08) eV for the cohesive energy, which are smaller than those of leading density functionals by about a factor of two or more. We consider a reparameterization of the spin-scaling parameters and find that the optimal parameters for these solids are very similar to those already in common use in molecular quantum chemistry, suggesting good transferability and reliable future applications to surface chemistry on insulators.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
